Preparation of a Novel Optically Active 8,8'-Bi-isoquinolyl and its Co-ordination as a Bridging Ligand in Rhodium(1) Complexes

Koji Yamamoto,** Kazuaki Watanabe,* Hiroaki Chikamatsu,* Yoshio Okamoto,* and Toshikatsu Yoshida*b

^a Department of Chemistry, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
 ^b Department of Chemistry, Faculty of Integrated Arts and Sciences, University of Osaka Prefecture, Sakai, Osaka 591, Japan

A novel optically active 7,7'-dimethoxy-8,8'-bi-isoquinolyl (5) with known absolute configuration has been prepared and has been found to co-ordinate to Rh' as a bridging ligand in $[RhCl(cod)]_2[\mu-(\pm)-(5)]$ (6) and $\{Rh_2(cod)_2[\mu-(\pm)-(5)]_2\}$ (ClO₄)₂ (8) (cod = cyclo-octa-1,5-diene).

Recent advances in asymmetric catalyses with chiral transition metal compounds are due largely to the syntheses of sophisticated chiral ligands.¹ Of particular interest are bidentate phosphines,² hydroxy ligands,³ and crown ethers⁴ incorporating an axially dis-symmetric 1,1'-binaphthyl unit. Although biand poly-dentate heteroaromatic compounds with more than two nitrogen atoms, such as 2,2'-bipyridyl, are classical ligands in co-ordination chemistry, no axially chiral analogues have been reported. Here we describe the preparation of the novel optically active 7,7'-dimethoxy-8,8'-bi-isoquinolyl (5)

with known absolute configuration. The compound (5) was found to co-ordinate to Rh^{I} as a bridging rather than a chelating ligand.

7-Methoxy-8-iodoisoquinoline (4) (m.p. 115—116 °C) was prepared via a sequence involving nitration of 7-methoxyisoquinoline (1),⁵ reduction of the resulting nitroisoquinoline (2),⁶ and diazotization of the aminoisoquinoline (3)⁷ followed by the Sandmeyer reaction (22% overall yield). Ullmann coupling of (4) with activated copper powder⁸ in N,Ndimethylformamide gave 7,7-dimethoxy-8,8'-bi-isoquinolyl

Figure 1. Views of (R,S)-(7) and (R,R)-(8) along non-bonded Rh \cdots Rh axis, cod molecules are omitted for clarity.

(5)† (m.p. 183-184°C, 40% yield).‡ Optical resolution of (\pm) -(5) was achieved by h.p.l.c. with a column packed with cellulose tris(3,5-dimethylphenylcarbamate) on silica gel;9 elution with n-hexane-propan-2-ol (9:1) afforded optically pure (-)-(5) as the first fraction and then (+)-(5) with $[\alpha]_D^{21}$ $(CHCl_3) - 160$ and $+159^\circ$, respectively. The absolute configuration of (-)-(5) was determined by a modification of the chiral recognition method developed by Miyano et al.¹⁰ The intermolecular cyclization of (-)-7,7'-dihydroxy-8,8'-bi-isoquinolyl {m.p. 350 °C, $[\alpha]_D^{22}$ –153° (CHCl₃), prepared by hydrolysis of (-)-(5) with (\pm) -1,1'-binaphthyl-2,2'-dicarboxylic dichloride followed by hydrolysis, gave the recovered (-)-(5) and (-)-(S)-binaphthyl-2,2'-dicarboxylic acid { $[\alpha]_D^{21}$ -34° (0.1 M NaOH), m.p. 259—264 °C, 31% optical purity}. This result unequivocally indicates that (-)-(5) has the same (S) configuration. Reaction of (\pm) -(5) with 0.5 mol. equiv. of $[RhCl(cod)]_2$ (cod = cyclo-octa-1,5-diene) in toluene at room temperature gave $[RhCl(cod)]_2[\mu-(\pm)-(5)]$ (6)[±] as bright yellow crystals [m.p. 235-242 °C (decomp.), 90% yield].⁺ Addition of $AgClO_4$ to a suspension of (6) in MeOH in the presence of an equimolar amount of (\pm) -(5) afforded ${\rm Rh}_2({\rm cod})_2[\mu-(5)]_2$ $({\rm ClO}_4)_2 \cdot {\rm MeNO}_2$ [m.p. 235-273°C (decomp.), 72% yield]† as yellow crystals (from MeNO₂-MeOH). The doubly bridged dication is a 1:1 mixture of meso-{ $Rh_2(cod)_2[\mu-(+)-(R)-(5)][\mu-(-)-(S)-(5)]$ }²⁺ (7)‡ and racemic { $Rh_2(cod)_2[\mu-(+)-(R)-(5)]_2$ }²⁺ (8)‡ and its enantiomer, as confirmed by the observation of two MeO proton signals at δ 3.64(s) and 3.90(s) in an equal intensity. The optically active compound (8) was separately prepared by adding AgClO₄ to a 1:2 mixture of $[RhCl(cod)]_2$ and (+)-(5)in MeOH. Compound (8), recrystallized from MeNO₂--MeOH, contains two moles of MeNO₂ as crystallization solvent [m.p. 230–232 °C (decomp.), $[\alpha]_D^{27} + 127^{\circ}$ (MeCN), 65% yield].[†] The relative orientation of the isoquinoline moieties in (8) probably differs significantly from that in the meso-modification (7) (Figure 1). Thus, the hydrogen atoms of (5) at positions 1 and 3 in (8) [δ 7.88(s) and 7.94(d), respectively] are more strongly shielded than the corresponding protons in (7) [δ 8.64(s) and 8.96(d), respectively].

[†] Satisfactory elemental analyses were obtained for all new compounds.

 $[\]ddagger$ ¹H N.m.r. (100 MHz) data for (5) (CDCl₃): δ 3.77 (s, MeO, 3H), 7.60 (br., ArH, 1H), 7.63 (d, *J* 8.6 Hz, ArH, 1H), 7.76 (d, *J* 8.6 Hz, ArH, 1H), and 8.15—8.61 (s, ArH, 2H). (6) (CDCl₃): δ 1.65 (m, CH₂, 4H), 2.48 (m, CH₂, 4H), 3.75 (s, MeO, 3H), 3.9 (br., =CH, 4H), 7.60 (d, *J* 6.4 Hz, H-4, 1H), 7.62 and 7.89 (d, *J* 8.6 Hz, H-5 and H-6, 2H), 8.38 (d, *J* 6.4 Hz, H-3, 1H), and 8.56 (s, H-1, 1H). (7) (CD₃NO₂): 1.6—3.0 (br.m, CH₂, 4H), 3.64 (s, MeO, 3H), 4.0 (br., =CH, 2H), 7.88 (d, *J* 6.4 Hz, H-4, 1H), 7.76 and 8.08 (d, *J* 9.6 Hz, H-5 and H-6, 2H), 8.64 (s, H-1, 1H), 8.96 (d, *J* 6.4 Hz, H-3, 1H). (8) (270 MHz, CD₃NO₂): δ 1.1 (m, CH₂, 1H), 2.3 (m, CH₂, 2H), 2.8 (m, CH₂, 1H), 3.90 (s, MeO, 3H), 4.1 (m, =CH, 1H), 4.3 (m, =CH, 1H), 7.74 (d, *J* 6.4 Hz, H-4, 1H), 7.96 and 8.20 (d, *J* 9.6 Hz, H-5 and H-6, 2H), 7.78 (s, H-1, 1H), and 7.94 (d, *J* 6.4 Hz, H-3, 1H).

The failure of (5) to co-ordinate as a chelating ligand is rather expected from the non-coplanarity of two isoquinoline rings. The 1,1'-bi-isoquinolyl analogue, however, is capable of co-ordinating as a chelating ligand. Thus, reaction of 7,7'dimethoxy-1,1'-bi-isoquinolyl (9) with $[RhCl(cod)]_2$ in MeOH and subsequent anion exchange with ClO_4^- gave a mononuclear complex $[Rh(cod)(9)]ClO_4$ as red crystals. The details will be reported separately together with the Rh^I complexes of optically active 7,7'-bridged-1,1'-bi-isoquinolyls.

Received, 12th January 1987; Com. 038

References

1 'Asymmetric Synthesis,' ed. J. D. Morrison, Academic Press, Orlando, 1985.

- R. Noyori, I. Tomino, and Y. Tanomoto, J. Am. Chem. Soc., 1979, 101, 3129; R. Noyori, I. Tomino, and N. Nishizawa, *ibid.*, 1979, 101, 5843; A. G. Olivero, B. Weidman, and D. Seebach, *Helv. Chim. Acta*, 1981, 64, 2485.
- 4 D. J. Cram and M. J. Cram, Acc. Chem. Res., 1978, 11, 8.
- 5 von P. Fritsch, Liebigs Ann. Chem., 1985, 286, 1.
- 6 M. Mulka, J. Chem. Soc., 1953, 3597.
- 7 Y. Ahmad and D. H. Hey, J. Chem. Soc., 1961, 3883.
 8 R. C. Fuson and E. A. Clereland, Org. Synth., 1955, Coll. Vol. III, 339.
- 9 Y. Okamoto, M. Kawashima, and K. Hatada, J. Chromatogr., 1986, 363, 173.
- 10 S. Miyano, M. Tobita, M. Nawa, S. Sata, and H. Hashimoto, J. Chem. Soc., Chem. Commun., 1980, 1233.